Adaptive Two-View Online Learning for Math Topic Classification

نویسندگان

  • Tam T. Nguyen
  • Kuiyu Chang
  • Siu Cheung Hui
چکیده

Text categorization has been a popular research topic for years and has become more or less a practical technology. However, there exists little research on math topic classification. Math documents contain both textual data and math expressions. The text and math can be considered as two related but different views of a math document. The goal of online math topic classification is to automatically categorize a math document containing both mathematical expressions and textual content into an appropriate topic without the need for periodically retraining the classifier. To achieve this, it is essential to have a two-view online classification algorithm, which deals with the textual data view and the math expression view at the same time. In this paper, we propose a novel adaptive two-view online math document classifier based on the Passive Aggressive (PA) algorithm. The proposed approach is evaluated on real world math questions and answers from the Math Overflow question answering system. Compared to the baseline PA algorithm, our method’s overall F-measure is improved by up to 3%. The improvement of our algorithm over the plain math expression view is almost 6%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Fuzzy Stabilizer Based on Online Learning Algorithm for Damping of Low-Frequency Oscillations

A multi objective Honey Bee Mating Optimization (HBMO) designed by online learning mechanism is proposed in this paper to optimize the double Fuzzy-Lead-Lag (FLL) stabilizer parameters in order to improve low-frequency oscillations in a multi machine power system. The proposed double FLL stabilizer consists of a low pass filter and two fuzzy logic controllers whose parameters can be set by the ...

متن کامل

Reinforcement Learning Based PID Control of Wind Energy Conversion Systems

In this paper an adaptive PID controller for Wind Energy Conversion Systems (WECS) has been developed. Theadaptation technique applied to this controller is based on Reinforcement Learning (RL) theory. Nonlinearcharacteristics of wind variations as plant input, wind turbine structure and generator operational behaviordemand for high quality adaptive controller to ensure both robust stability an...

متن کامل

An Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources

This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO...

متن کامل

ADAPTIVE FUZZY TRACKING CONTROL FOR A CLASS OF PERTURBED NONLINEARLY PARAMETERIZED SYSTEMS USING MINIMAL LEARNING PARAMETERS ALGORITHM

In this paper, an adaptive fuzzy tracking control approach is proposed for a class of single-inputsingle-output (SISO) nonlinear systems in which the unknown continuous functions may be nonlinearlyparameterized. During the controller design procedure, the fuzzy logic systems (FLS) in Mamdani type are applied to approximate the unknown continuous functions, and then, based on the minimal learnin...

متن کامل

Online learning of positive and negative prototypes with explanations based on kernel expansion

The issue of classification is still a topic of discussion in many current articles. Most of the models presented in the articles suffer from a lack of explanation for a reason comprehensible to humans. One way to create explainability is to separate the weights of the network into positive and negative parts based on the prototype. The positive part represents the weights of the correct class ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012